
Configuring DSpace Item
Submissions

1. Submission Input Forms 2

Manual Item Submission 2
Metadata Input 2
Configuring input-forms.xml 2

Adding a Collection Map 3
Adding a Form Set 3
Adding Value-Pairs 5

dspace.cfg 6
Configuring the File Upload step 6

Exercises 6

2. Submission Steps 6

Submission Stages 6
item-submission.xml 7

The Structure of item-submission.xml 7
Defining Steps (<step>) within the item-submission.xml 7

Exercises 8

3. Configuring Workflow 8
Workflow Steps 8
Workflow Roles 8

Submitter 8
Reviewer 8
Metadata Editor 8
Collection Administrator 9

1 / 10

© 2009 @mire N.V. www.atmire.com

1. Submission Input Forms

Manual Item Submission

The following diagram outlines the different ways to deposit content into DSpace. This session will go into
detail about the Web Submit UI and the workflow.

In DSpace an item is made up of: Metadata, Bundles (e.g. ORIGINAL / LICENCE / TEXT), and Bitstreams.

A typical submission process through the web UI is as follows. First choose a collection to submit the item
to. Then answer initial questions, such as whether or not the item has been publishedbefore or has more
than one title. Proceed to enter metadata for the item in one ore more steps/pages (edit metadata steps).
Then upload one or more files, verify the submission and finally you will have to agree to a deposit licence.

Metadata Input

The “Edit Metadata” steps in the web submission process are fully cusomizable. Any field in the DSpace
metadata registry can be added to the forms in the edit metadata steps and these steps are configurable in
the input-forms.xml file. The metadata registry can be accessed through the Dspace admin interface and
supports multiple schemas. By default the metadata registry will contain a set of qualified dublin core fields,
and the admin can add, change or delete any of these fields in the web user interface. This session will not
go into detail on how to manage the metadata registry, for this the reader is reffered to the dspace
documentation. The next section will outline how to configure the edit metadata steps.

Configuring input-forms.xml

The XML configuration file has a single top-level element, input-forms, which contains three elements in
a specific order. The outline is as follows:

<input-forms>
 <form-map>
 <name-map collection-handle="default" form-name="traditional"/>
 ...
 </form-map>
 <form-definitions>
 <form name="traditional">
 ...
 </form>
 </form-definitions>
 <form-value-pairs>
 <value-pairs value-pairs-name="common_iso_languages"

2 / 10

© 2009 @mire N.V. www.atmire.com

 dc-term="language_iso">
 ...
 </value-pairs>
 </form-value-pairs>
</input-forms>

Adding a Collection Map
Each name-map element within form-map associates a collection with the name of a form set. Its
collection-handle attribute is the Handle of the collection, and its form-name attribute is the form set
name, which must match the name attribute of a form element.

For example, the following fragment shows how the collection with handle "123456789/42" is attached to
the "TechRpt" form set:

 <form-map>
 <name-map collection-handle="123456789/42" form-name=" TechRpt"/>
 ...
 </form-map>

 <form-definitions>
 <form name="TechRept">
 ...
 </form>
 </form-definitions>

It's a good idea to keep the definition of the default name-map from the example input-forms.xml so
there is always a default for collections which do not have a custom form set.

Adding a Form Set
You can add a new form set by creating a new form element within the form-definitions element. It has
one attribute, name, which as seen above must match the value of the name-map for the collections it is to
be used for.

Forms and Pages
The content of the form is a sequence of page elements. Each of these corresponds to a Web page of
forms for entering metadata elements, presented in sequence between the initial "Describe" page and the
final "Verify" page (which presents a summary of all the metadata collected).

A form must contain at least one and at most six pages. They are presented in the order they appear in the
XML. Each page element must include a number attribute, that should be its sequence number, e.g.

<page number="1">

The page element, in turn, contains a sequence of field elements. Each field defines an interactive dialog
where the submitter enters one of the Dublin Core metadata items.

Composition of a Field
Each field contains the following elements, in the order indicated. The required sub-elements are so
marked:

dc-schema (Required)

Name of metadata schema employed, e.g. dc for Dublin Core. This value must match the value of the
schema element defined in dublin-core-types.xml

dc-element (Required)

Name of the Dublin Core element entered in this field, e.g. contributor.

dc-qualifier

3 / 10

© 2009 @mire N.V. www.atmire.com

Qualifier of the Dublin Core element entered in this field, e.g. when the field is contributor.advisor the
value of this element would be advisor. Leaving this out means the input is for an unqualified DC element.

repeatable

Value is true when multiple values of this field are allowed, false otherwise. When you mark a field
repeatable, the UI servlet will add a control to let the user ask for more fields to enter additional values.
Intended to be used for arbitrarily-repeating fields such as subject keywords, when it is impossible to know
in advance how many input boxes to provide.

label (Required)

Text to display as the label of this field, describing what to enter, e.g. "Your Advisor's Name".

input-type (Required)

Defines the kind of interactive widget to put in the form to collect the Dublin Core value. Content must be
one of the following keywords:
• onebox - A single text-entry box.
• twobox - A pair of simple text-entry boxes, used for repeatable values such as the DC subject item. Note:

The 'twobox' input type is rendered the same as a 'onebox' in the XML-UI, but both allow for ease of
adding multiple values.

• textarea - Large block of text that can be entered on multiple lines, e.g. for an abstract.
• name - Personal name, with separate fields for family name and first name. When saved they are

appended in the format 'LastName, FirstName'
• date - Calendar date. When required, demands that at least the year be entered.
• series - Series/Report name and number. Separate fields are provided for series name and series

number, but they are appended (with a semicolon between) when saved.
• dropdown - Choose value(s) from a "drop-down" menu list. Note: You must also include a value for the
value-pairs-name attribute to specify a list of menu entries from which to choose. Use this to make a
choice from a restricted set of options, such as for the language item.

• qualdrop_value - Enter a "qualified value", which includes both a qualifier from a drop-down menu and a
free-text value. Used to enter items like alternate identifiers and codes for a submitted item, e.g. the DC
identifier field. Note: As for the dropdown type, you must include the value-pairs-name attribute to
specify a menu choice list.

• list - Choose value(s) from a checkbox or radio button list. If the repeatable attribute is set to true, a
list of checkboxes is displayed. If the repeatable attribute is set to false, a list of radio buttons is
displayed. Note: You must also include a value for the value-pairs-name attribute to specify a list of
values from which to choose.

hint (Required)

Content is the text that will appear as a "hint", or instructions, next to the input fields. Can be left empty, but
it must be present.

required

When this element is included with any content, it marks the field as a required input. If the user tries to
leave the page without entering a value for this field, that text is displayed as a warning message. For
example,

<required>You must enter a title.</required>

Note that leaving the required element empty will not mark a field as required, e.g.:

<required></required>

visibility

When this optional element is included with a value, it restricts the visibility of the field to the scope defined
by that value. If the element is missing or empty, the field is visible in all scopes. Currently supported
scopes are:

4 / 10

© 2009 @mire N.V. www.atmire.com

• workflow : the field will only be visible in the workflow stages of submission. This is good for hiding
difficult fields for users, such as subject classifications, thereby easing the use of the submission system.

• submit : the field will only be visible in the initial submission, and not in the workflow stages.

In addition, you can decide which type of restriction apply: read-only or hiding the field (default behaviour)
using the otherwise attribute of the visibility XML element. For example:

<visibility otherwise="readonly">workflow</visibility>

Note that it is considered a configuration error to limit a field's scope while also requiring it - an exception
will be generated when this combination is detected.

vocabulary

When this optional element is included, the taxonomy defined by the value will be assigned to the field. This
element can be used with the onebox and twobox input-type. The taxonomy definition will be retrieved from
[dspace]/config/controlled-vocabularies/value.xml where value is the contents of the
vocabulary element. The vocabulary is only provided for the JSPUI, it has not been ported to the XMLUI.
During the submission, a link to the controlled vocabulary will be included in the field. This link will lead to a
pop-up containing a collapsable tree of the values in the taxonomy definition. In order to enable
vocabularies, webui.controlledvocabulary.enable = true must be included in the dspace.cfg file.

closedVocabulary

When this optional element is included and contains the value "true", the field value can only be the value
chosen by the vocabulary. By default, the taxonomy can be used, but the user can also choose to insert
text independent of the taxonomy. Configuring closedVocabulary to "true" will ensure only a value of
the taxonomy is inserted. The element can only be used when a vocabulary is defined.

Automatically omitted Fields (initial questions)
You may notice that some fields are automatically skipped when a custom form page is displayed,
depending on the kind of item being submitted. This is because the DSpace user-interface engine skips
Dublin Core fields which are not needed, according to the initial description of the item. For example, if the
user indicates there are no alternate titles on the first "Describe" page (the one with a few checkboxes), the
input for the title.alternative DC element is automatically removed, even on custom submission
pages.

When a user initiates a submission, DSpace first displays what we'll call the "initial-questions page". By
default, it contains three questions with check-boxes:

1. The item has more than one title, e.g. a translated title
Controls title.alternative field.

2. The item has been published or publicly distributed before
Controls DC fields:
• date.issued
• publisher
• identifier.citation

3. The item consists of more than one file
Does not affect any metadata input fields.

The answers to the first two questions control whether inputs for certain of the DC metadata fields will
displayed, even if they are defined as fields in a custom page. Conversely, if the metadata fields controlled
by a checkbox are not mentioned in the custom form, the checkbox is not displayed in the initial page to
avoid confusing or misleading the user.

Adding Value-Pairs
Finally, your custom form description needs to define the "value pairs" for any fields with input types that
refer to them. Do this by adding a value-pairs element to the contents of form-value-pairs. It has
the following required attributes:

5 / 10

© 2009 @mire N.V. www.atmire.com

• value-pairs-name -- Name by which an input-type refers to this list.
• dc-term -- Qualified Dublin Core field for which this choice list is selecting a value.

Each value-pairs element contains a sequence of pair sub-elements, each of which in turn contains
two elements:
• displayed-value -- Name shown (on the web page) for the menu entry.
• stored-value -- Value stored in the DC element when this entry is chosen.

Unlike the HTML select tag, there is no way to indicate one of the entries should be the default, so the
first entry is always the default choice.

Here is a menu of types of common identifiers:

 <value-pairs value-pairs-name="common_identifiers" dc-term="identifier">
 <pair>
 <displayed-value>Gov't Doc#</displayed-value>
 <stored-value>govdoc</stored-value>
 </pair>
 <pair>
 <displayed-value>URI</displayed-value>
 <stored-value>uri</stored-value>
 </pair>
 <pair>
 <displayed-value>ISBN</displayed-value>
 <stored-value>isbn</stored-value>
 </pair>
 </value-pairs>

dspace.cfg

Configuring the File Upload step
The Upload step in the DSpace submission process has two configuration options which can be set with
your [dspace]/config/dspace.cfg configuration file. They are as follows:

• upload.max - The maximum size of a file (in bytes) that can be uploaded from the JSPUI (not applicable
for the XMLUI). It defaults to 536870912 bytes (512MB). You may set this to -1 to disable any file size
limitation.

• webui.submit.upload.required - Whether or not all users are required to upload a file when they submit an
item to DSpace. It defaults to 'true'. When set to 'false' users will see an option to skip the upload step
when they submit a new item.

Exercises

Look at the example input-forms.xml file and experiment with a custom form to learn this specification
language thoroughly. It is a very simple way to express the layout of data-entry forms, but the only way to
learn all its subtleties is to use it.

2. Submission Steps

Submission Stages

6 / 10

© 2009 @mire N.V. www.atmire.com

item-submission.xml

The [dspace]/config/item-submission.xml contains the submission configurations for both the
DSpace JSP user interface (JSPUI) or the DSpace XML user interface (XMLUI or Manakin). This
configuration file contains detailed documentation within the file itself, which should help you better
understand how to best utilize it.

The Structure of item-submission.xml
<item-submission>
 <submission-map>
 <name-map collection-handle="default" submission-name="traditional" />
 </submission-map>
 <step-definitions>
 <step id="collection">
 <heading></heading>
 <processing-class>
 org.dspace.submit.step.SelectCollectionStep
 </processing-class>
 <jspui-binding>
 org.dspace.app.webui.submit.step.JSPSelectCollectionStep
 </jspui-binding>
 <xmlui-binding>
 org.dspace.app.xmlui.aspect.submission.submit.SelectCollectionStep
 </xmlui-binding>
 <workflow-editable>false</workflow-editable>
 </step>
 </step-definitions>
 <submission-definitions>
 <submission-process name="traditional">
 <step>
 …
 </step>
 </submission-process>
 </submission-definitions>
</item-submission>

Because this file is in XML format, you should be familiar with XML before editing this file. By default, this
file contains the "traditional" Item Submission Process for DSpace, which consists of the following Steps (in
this order):

Select Collection -> Initial Questions -> Describe -> Upload -> Verify -> License -> Complete

If you would like to customize the steps used or the ordering of the steps, you can do so within the
<submission-definition> section of the item-submission.xml.

In addition, you may also specify different Submission Processes for different DSpace Collections. This can
be done in the <submission-map> section. The item-submission.xml file itself documents the syntax
required to perform these configuration changes.

Defining Steps (<step>) within the item-submission.xml
This section describes how Steps of the Submission Process are defined within the item-
submission.xml.

XPath is an important part of the XSLT standard. XPath knowledge is necessary to be able to manipulate
XML with XSLT documents. XSLT will perform operations on an XML file to manipulate and transform it into
some other form (eg. XHTML) and XPath is essential to XSLT in the sense that XPath is the technique used
to select portions of the input XML file to be transformed by XSLT templates. More about XPath in XSLT in
section “3. XSLT”.

The Upload step in the DSpace submission process has two configuration options which can be set with
your [dspace]/config/dspace.cfg configuration file. They are as follows:

7 / 10

© 2009 @mire N.V. www.atmire.com

• upload.max - The maximum size of a file (in bytes) that can be uploaded from the JSPUI (not applicable
for the XMLUI). It defaults to 536870912 bytes (512MB). You may set this to -1 to disable any file size
limitation.

• webui.submit.upload.required - Whether or not all users are required to upload a file when they submit an
item to DSpace. It defaults to 'true'. When set to 'false' users will see an option to skip the upload step
when they submit a new item.

Exercises

Replace the initial questions step by a step without a userinterface which preconfigures the values to set
multiple files to true, multiple titles to false, and published before to true. Check whether multiple files can
be added, the issue date can be added, and the alternative title cannot be added despite the fact that it is
configured in input-forms.xml.

3. Configuring Workflow
This section summarizes and expands on the DSpace documentation regarding workflow.

Workflow Steps

A collection's workflow can have up to three steps. Each collection may have an associated e-person group
assigned for performing each step; if no group is associated with a certain step, that step is skipped. If a
collection has no e-person groups associated with any step, submissions to that collection are committed
straight into the archive.

When a step is invoked, the task of performing that workflow step put in the task pool of the associated
group. If any one member of that group takes the task from the pool, it is then removed from the task pool.

Workflow Roles

Submitter
The E-People and Groups that have permission to submit new items to this collection.

Reviewer
Accept/Reject Step: The people responsible for this step are able to accept or reject incoming submissions.
However, they are not able to edit the submission's metadata.

Metadata Editor
Edit Metadata Step: The people responsible for this step are able to edit the metadata of incoming
submissions, but will not be able to reject them.

8 / 10

© 2009 @mire N.V. www.atmire.com

Collection Administrator
This role is not actually part of the workflow, but can configure the other roles in the workflow. Collection
administrators decide who can submit items to the collection, withdraw items, edit item metadata (after
submission), and add (map) existing items from other collections to this collection (subject to authorization
for that collection).

These workflow roles can be configured in the DSpace web interface as shown in the screenshot below.

9 / 10

© 2009 @mire N.V. www.atmire.com

TERMS OF USE

PLEASE READ THESE TERMS OF USE CAREFULLY BEFORE USING THESE COURSE MATERIALS. By
using these course materials, you signify your assent to these terms of use. If you do not agree to these
terms of use, please do not use these course materials.

RESTRICTIONS ON USE OF MATERIALS. These course materials are owned by @mire NV, Technologielaan
9, 3001 Heverlee (Belgium).

No components from these course materials owned, licensed or controlled by @mire NV may be copied,
reproduced, republished, uploaded, posted, transmitted, or distributed in any way, except that you may
download one copy of the materials on any single computer for your personal, non-commercial home use
only, provided you keep intact all copyright and other proprietary notices.

Modification of the materials or use of the materials for any other purpose is a violation of @mire's copyright
and other proprietary rights. The use of any such material on any other web site or networked computer
environment is prohibited.

To request permission to reproduce materials,
call +32 2 888 29 56,
email info@atmire.com,
or write to @mire NV, Technologielaan 9, 3001 Heverlee, Belgium.

10 / 10

© 2009 @mire N.V. www.atmire.com

