
The Manakin dependencies:
XML/XSLT and Cocoon

1. XML 2

What is XML? 2
An Example XML Document 2
Displaying XML with XSLT 2
XML Namespaces 2
XML Schema 3

2. XPath 4

What is XPath? 4
XPath in XSLT 4
Terminology 4
Path Expressions & Standard Functions 5
Exercises 8

3. XSLT 9
What is XSLT? 9
XSLT Uses XPath 9
XSL Transformations 9
Exercises 11

4. Cocoon Basics 12
Pipelines & Components 12
Sitemaps 13

5. Solutions to exercises 15

1 / 16

© 2009 @mire N.V. www.atmire.com

1. XML
This introduction to XML is based on the w3schools “XML tutorial“ (http://www.w3schools.com/xml/)

What is XML?

XML stands for EXtensible Markup Language and is a markup language much like HTML. XML was
designed to carry data, not to display data and tags are not predefined, you must define your own tags.
XML is a W3C recommendation.

An Example XML Document

XML documents use a self-describing and simple syntax:

<?xml version="1.0" encoding="ISO-8859-1"?>
<note>
 <to>Tove</to>
 <from>Jani</from>
 <heading>Reminder</heading>
 <body>Don't forget me this weekend!</body>
</note>

The first line is the XML declaration. It defines the XML version (1.0) and the encoding used (ISO-8859-1 =
Latin-1/West European character set). The next line describes the root element of the document (like
saying: "this document is a note"). The next 4 lines describe 4 child elements of the root (to, from, heading,
and body). All elements can have text content and attributes (just like in HTML, <book
category="children">).

Rules
• All XML Elements Must Have a Closing Tag
• XML Tags are Case Sensitive
• XML Elements Must be Properly Nested
• XML Documents Must Have a Root Element
• XML Attribute Values Must be Quoted

Displaying XML with XSLT

It is possible to use CSS to format and layout an XML document. However XSLT (eXtensible Stylesheet
Language Transformations) is the recommended style sheet language of XML and is far more sophisticated
than CSS.

The XSLT transformation can be done by the browser, when the browser reads the XML file. Different
browsers may produce different results when transforming XML with XSLT. To reduce this problem the XSLT
transformation can also be done on the server, as is the case for the DSpace XMLUI.

XML Namespaces

XML Namespaces provide a method to avoid element name conflicts. In XML, element names are defined
by the developer. This often results in a conflict when trying to mix XML documents from different XML
applications. Name conflicts in XML can easily be avoided using a name prefix (<h:table>)

2 / 16

© 2009 @mire N.V. www.atmire.com

The xmlns Attribute
When using prefixes in XML, a so-called namespace for the prefix must be defined. The namespace is
defined by the xmlns attribute in the start tag of an element. The namespace declaration has the following
syntax, xmlns:prefix="URI".

When a namespace is defined for an element, all child elements with the same prefix are associated with
the same namespace. Namespaces can also be declared in the elements where they are used (<h:table
xmlns:h="http://www.w3.org/TR/html4/">). Or namespaces can be declared in the XML root
element (<root xmlns:h="http://www.w3.org/TR/html4/">).

The namespace URI is not used by the parser to look up information. The purpose is to give the namespace
a unique name. However, often companies use the namespace as a pointer to a web page containing
namespace information.

XML encoding
<?xml version="1.0" encoding="windows-1252"?>
<?xml version="1.0" encoding="ISO-8859-1"?>
<?xml version="1.0" encoding="UTF-8"?>
<?xml version="1.0" encoding="UTF-16"?>

Best Practices:

• Always use the encoding attribute
• Use an editor that supports encoding
• Make sure you know what encoding the editor uses
• Use the same encoding in your encoding attribute

XML Schema

Purpose
The purpose of an XML Schema is to define the legal building blocks of an XML document, just like a DTD.
An XML Schema defines the elements and attributes that can appear in a document. The schema also
defines the possible child elements and their number and order. It also determines whether an element can
be empty and if an the element is not empty the schema defines data types, default and fixed values for
both elements and attributes.

XML Schema Example
XML example

<?xml version="1.0"?>
<note>
 <to>Tove</to>
 <from>Jani</from>
 <heading>Reminder</heading>
 <body>Don't forget me this weekend!</body>
</note>

XML Schema Example

<?xml version="1.0"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">
<xs:element name="note">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="to" type="xs:string"/>
 <xs:element name="from" type="xs:string"/>
 <xs:element name="heading" type="xs:string"/>

3 / 16

© 2009 @mire N.V. www.atmire.com

 <xs:element name="body" type="xs:string"/>
 </xs:sequence>
 </xs:complexType>
</xs:element>
</xs:schema>

The note element is a complex type because it contains other elements. The other elements (to, from,
heading, body) are simple types because they do not contain other elements.

Consider the following XML node:

<dateborn>1970-03-27</dateborn>

The following line will define in XML Schema that the node <dateborn> can only contain valid date values.

<xs:element name="dateborn" type="xs:date"/>

Referencing an XML schema

<?xml version="1.0"?>
<note xmlns="http://www.w3schools.com" xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance" xsi:schemaLocation="http://www.w3schools.com note.xsd">
 <to>Tove</to>
 <from>Jani</from>
 <heading>Reminder</heading>
 <body>Don't forget me this weekend!</body>
</note>

2. XPath
This introduction to XPath is based on the w3schools “XPath tutorial“ (http://www.w3schools.com/xpath/)

What is XPath?

XPath is a syntax for defining parts of an XML document and uses path expressions to navigate in XML
documents. XPath is a major element in XSLT.

XPath in XSLT

XPath is an important part of the XSLT standard. XPath knowledge is necessary to be able to manipulate
XML with XSLT documents. XSLT will perform operations on an XML file to manipulate and transform it into
some other form (eg. XHTML) and XPath is essential to XSLT in the sense that XPath is the technique used
to select portions of the input XML file to be transformed by XSLT templates. More about XPath in XSLT in
section “3. XSLT”.

Terminology

Nodes - In XPath, there are seven kinds of nodes: element, attribute, text, namespace, processing-
instruction, comment, and document nodes. XML documents are treated as trees of nodes. The topmost
element of the tree is called the root element.
Atomic values - Atomic values are nodes with no children or parent.
Items - Items are atomic values or nodes.
Parent - Each element and attribute has one parent.
Children - Element nodes may have zero, one or more children.
Siblings - Nodes that have the same parent.
Ancestors - A node's parent, parent's parent, etc.
Descendants - A node's children, children's children, etc.

4 / 16

© 2009 @mire N.V. www.atmire.com

Path Expressions & Standard Functions

XPath uses path expressions to select nodes or node-sets in an XML document. These path expressions
look very much like the expressions you see when you work with a traditional computer file system.

Selecting Nodes
XPath uses path expressions to select nodes in an XML document. The node is selected by following a path
or steps. The most useful path expressions are listed below:

Expression Description

nodename Selects all child nodes of the named node

/ Selects from the root node

// Selects nodes in the document from the current node that match the selection no
matter where they are

. Selects the current node

.. Selects the parent of the current node

@ Selects attributes

Example XML

<?xml version="1.0"?>
<bookstore>
<book>
 <title lang="eng">Harry Potter</title>
 <price>29.99</price>
</book>
<book>
 <title lang="eng">Learning XML</title>
 <price>39.95</price>
</book>
</bookstore>

In the table below we have listed some path expressions and the result of the expressions based on the
example above:

Path Expression Result

bookstore Selects all the child nodes of the bookstore element

/bookstore Selects the root element bookstore
Note: If the path starts with a slash (/) it always represents an absolute path to an
element!

bookstore/book Selects all book elements that are children of bookstore

//book Selects all book elements no matter where they are in the document

bookstore//book Selects all book elements that are descendant of the bookstore element, no matter
where they are under the bookstore element

//@lang Selects all attributes that are named lang

Predicates
Predicates are used to find a specific node or a node that contains a specific value. Predicates are always
embedded in square brackets. In the table below there are some path expressions with predicates and the
result of the expressions:

5 / 16

© 2009 @mire N.V. www.atmire.com

Path Expression Result

/bookstore/book[1] Selects the first book element that is the child of the bookstore
element.

/bookstore/book[last()] Selects the last book element that is the child of the bookstore
element

/bookstore/book[last()-1] Selects the last but one book element that is the child of the
bookstore element

/bookstore/book[position()<3] Selects the first two book elements that are children of the
bookstore element

//title[@lang] Selects all the title elements that have an attribute named lang

//title[@lang='eng'] Selects all the title elements that have an attribute named lang
with a value of 'eng'

/bookstore/book[price>35] Selects all the book elements of the bookstore element that
have a price element with a value greater than 35

/bookstore/book[price>35]/title Selects all the title elements of the book elements of the
bookstore element that have a price element with a value
greater than 35

Operators
Below is a list of the operators that can be used in XPath expressions:

Operator Description Example Return value

| Computes two node-sets //book | //cd Returns a node-set with all
book and cd elements

+ Addition 6 + 4 10

= Equal price=9.80 true if price is 9.80

false if price is 9.90

!= Not equal price!=9.80 true if price is 9.90

false if price is 9.80

< Less than price<9.80 true if price is 9.00

false if price is 9.80

<= Less than or equal to price<=9.80 true if price is 9.00

false if price is 9.90

or or price=9.80 or price=9.70 true if price is 9.80

false if price is 9.50

and and price>9.00 and
price<9.90

true if price is 9.80

false if price is 8.50

For a exhaustive list of XPath operators please refer to “XQuery 1.0 and XPath 2.0 Functions and
Operators” 1

6 / 16

1 http://www.w3.org/TR/xpath-functions/

© 2009 @mire N.V. www.atmire.com

http://www.w3.org/TR/xpath-functions/
http://www.w3.org/TR/xpath-functions/

Selecting Unknown Nodes
XPath wildcards can be used to select unknown XML elements.

Wildcard Description

* Matches any element node

@* Matches any attribute node

node() Matches any node of any kind

In the table below we have listed some path expressions and the result of the expressions:

Path Expression Result

/bookstore/* Selects all the child nodes of the bookstore element

//* Selects all elements in the document

//title[@*] Selects all title elements which have any attribute

Selecting Several Paths
By using the | operator (OR operator) in an XPath expression you can select several paths. In the table
below we have listed some path expressions and the result of the expressions:

Path Expression Result

//book/title | //book/price Selects all the title AND price elements of all book elements

//title | //price Selects all the title AND price elements in the document

/bookstore/book/title | //price Selects all the title elements of the book element of the
bookstore element AND all the price elements in the document

Standard Functions

Name Description

fn:not(arg) Returns true if the boolean value is false, and false if the boolean
value is true

fn:starts-with(string1,string2) Returns true if string1 starts with string2, otherwise it returns false

fn:concat(string,string,...) Returns the concatenation of the strings

fn:substring(string,start,len) Returns the substring from the start position to the specified
length. Index of the first character is 1. If length is omitted it
returns the substring from the start position to the end

fn:string-length(string) Returns the length of the specified string. If there is no string
argument it returns the length of the string value of the current
node

fn:number(arg) Returns the numeric value of the argument. The argument could
be a boolean, string, or node-set

For an exhaustive list of XPath standard functions please refer to “XQuery 1.0 and XPath 2.0 Functions and
Operators” 2

7 / 16

2 http://www.w3.org/TR/xpath-functions/

© 2009 @mire N.V. www.atmire.com

http://www.w3.org/TR/xpath-functions/
http://www.w3.org/TR/xpath-functions/

Exercises

<catalog>
 <cd stock="2">
 <title>Nevermind</title>
 <artist>Nirvana</artist>
 <country>USA</country>
 <company>Geffen</company>
 <genre>Grunge</genre>
 <length>59:23</length>
 <year>1991</year>
 </cd>
 <cd stock="0">
 <title>Kind of blue</title>
 <artist>Miles Davis</artist>
 <country>USA</country>
 <company>Columbia</company>
 <genre>Jazz</genre>
 <length>45:44</length>
 <year>1959</year>
 </cd>
 <cd stock="2">
 <title>In a Silent Way</title>
 <artist>Miles Davis</artist>
 <country>USA</country>
 <company>Columbia</company>
 <genre>Jazz</genre>
 <length>38:10</length>
 <year>1969</year>
 </cd>
 <cd stock="3">
 <title>Led Zeppelin IV</title>
 <artist>Led Zeppelin</artist>
 <country>UK</country>
 <company>Atlantic</company>
 <genre>Rock</genre>
 <length>42:33</length>
 <year>1971</year>
 </cd>
 <cd stock="0">
 <title>Grace</title>
 <artist>Jeff Buckley</artist>
 <country>USA</country>
 <company>Columbia</company>
 <genre>Rock</genre>
 <length>51:44</length>
 <year>1994</year>
 </cd>
 <cd stock="1">
 <title>My Generation</title>
 <artist>The Who</artist>
 <country>UK</country>
 <company>Brunswick</company>
 <genre>Rock</genre>
 <length>36:13</length>
 <year>1965</year>
 </cd>
</catalog>

For the XML example above, write XPtah expressions to select the information in the following statements:

2.1. All genre nodes
2.2. All cd titles
2.3. All cd nodes that are out of stock
2.4. All cd nodes that have the genre 'Rock'
2.5. All cd titles that were made in the USA
2.6. The years 'Miles Davis' has released a cd
2.7. All cd titles by the company 'Columbia' of the genre 'Rock'
2.8. All cd titles that are in stock, that don't have the genre 'Jazz'.

8 / 16

© 2009 @mire N.V. www.atmire.com

3. XSLT
This introduction to XSLT is based on the w3schools “XSLT tutorial“ (http://www.w3schools.com/xsl/)

What is XSLT?

XSLT stands for XSL Transformations and transforms an XML document into another XML document. XSLT
uses XPath to navigate in XML documents. XSLT is also a W3C recommendation.

XSLT is used to transform an XML document into another XML document, or another type of document that
is recognized by a browser, like HTML and XHTML. Normally XSLT does this by transforming each XML
element into an (X)HTML element.

With XSLT you can add/remove elements and attributes to or from the output file. You can also rearrange
and sort elements, perform tests and make decisions about which elements to hide and display, and a lot
more.

XSLT Uses XPath

XSLT uses XPath to find information in an XML document. XPath is used to navigate through elements and
attributes in XML documents.

In the transformation process, XSLT uses XPath to define parts of the source document that should match
one or more predefined templates. When a match is found, XSLT will transform the matching part of the
source document into the result document.

XSL Transformations

The root element that declares the document to be an XSL style sheet is <xsl:stylesheet> or
<xsl:transform>. The correct way to declare an XSL style sheet according to the W3C XSLT
Recommendation is: <xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/
XSL/Transform">

XML Example
<?xml version="1.0" encoding="ISO-8859-1"?>
<catalog>
 <cd>
 <title>Nevermind</title>
 <artist>Nirvana</artist>
 <country>USA</country>
 <company>Geffen</company>
 <genre>Grunge</genre>
 <length>59:23</length>
 <year>1991</year>
 </cd>
 <cd>
 ...
 </cd>
</catalog>

The <xsl:template> Element
The <xsl:template> element is used to build templates.

The match attribute is used to associate a template with an XML element. The match attribute can also be
used to define a template for the entire XML document. The value of the match attribute is an XPath
expression (i.e. match="/" defines the whole document).

9 / 16

© 2009 @mire N.V. www.atmire.com

http://www.w3.org/1999/XSL/Transform
http://www.w3.org/1999/XSL/Transform
http://www.w3.org/1999/XSL/Transform
http://www.w3.org/1999/XSL/Transform

<xsl:template match="/">
<xsl:template match="//company">
<xsl:template match="catalog/cd">

The <xsl:value-of> Element
The <xsl:value-of> element can be used to extract the value of an XML element and add it to the
output stream of the transformation.

<xsl:value-of select="catalog/cd/title"/>

The <xsl:for-each> Element
The XSL <xsl:for-each> element can be used to select every XML element of a specified node-set.

<xsl:for-each select="catalog/cd"> ... </xsl:for-each>

The <xsl:if> Element
To put a conditional if test against the content of the XML file, add an <xsl:if> element to the XSL
document.

<xsl:if test="expression"> ... </xsl:if>

The <xsl:choose> Element
The <xsl:choose> element is used in conjunction with <xsl:when> and <xsl:otherwise> to express multiple
conditional tests.

<xsl:choose>
 <xsl:when test="expression"> ... </xsl:when>
 <xsl:otherwise> ... </xsl:otherwise>
</xsl:choose>

The <xsl:sort> Element
To sort the output, simply add an <xsl:sort> element inside the <xsl:for-each> element in the XSL
file.

The <xsl:apply-templates> Element
The <xsl:apply-templates> element applies a template to the current element or to the current
element's child nodes.

If we add a select attribute to the <xsl:apply-templates> element it will process only the child element
that matches the value of the attribute. We can use the select attribute to specify the order in which the
child nodes are processed.

The <xsl:import> Element
Imports the contents of one style sheet into another. Note: An imported style sheet has lower precedence
than the importing style sheet. The <xsl:import> element is often used to create layers of XSL code.
The basic idea is to create a customization layer in which you put all your changes, and then rely on
standard stylesheets for everything else by using the <xsl:import> element. The following line, the first
line in a DSpace Manakin Theme, defines the dri2xhtml.xsl as the standard stylesheet and everything
following this line can override any templates in the dri2xhtml.xsl.

<xsl:import href="../dri2xhtml.xsl"/>

10 / 16

© 2009 @mire N.V. www.atmire.com

Exercises

3.1. Develop an XSL Stylesheet that will transform the example XML into a HTML page containing a bullet
point list formatted as follows:
• Nirvana, Nevermind - in stock
• Artist C, Album D - out of stock
• ...

Example XML

<catalog>
 <cd stock="2">
 <title>Nevermind</title>
 <artist>Nirvana</artist>
 <country>USA</country>
 <company>Geffen</company>
 <genre>Grunge</genre>
 <length>59:23</length>
 <year>1991</year>
 </cd>
 <cd stock="0">
 <title>Kind of blue</title>
 <artist>Miles Davis</artist>
 <country>USA</country>
 <company>Columbia</company>
 <genre>Jazz</genre>
 <length>45:44</length>
 <year>1959</year>
 </cd>
 <cd stock="2">
 <title>In a Silent Way</title>
 <artist>Miles Davis</artist>
 <country>USA</country>
 <company>Columbia</company>
 <genre>Jazz</genre>
 <length>38:10</length>
 <year>1969</year>
 </cd>
 <cd stock="3">
 <title>Led Zeppelin IV</title>
 <artist>Led Zeppelin</artist>
 <country>UK</country>
 <company>Atlantic</company>
 <genre>Rock</genre>
 <length>42:33</length>
 <year>1971</year>
 </cd>
 <cd stock="0">
 <title>Grace</title>
 <artist>Jeff Buckley</artist>
 <country>USA</country>
 <company>Columbia</company>
 <genre>Rock</genre>
 <length>51:44</length>
 <year>1994</year>
 </cd>
 <cd stock="1">
 <title>My Generation</title>
 <artist>The Who</artist>
 <country>UK</country>
 <company>Brunswick</company>
 <genre>Rock</genre>
 <length>36:13</length>
 <year>1965</year>
 </cd>
</catalog>

11 / 16

© 2009 @mire N.V. www.atmire.com

4. Cocoon Basics
The Cocoon 2 Architecture is based on component pipelines, the elements in the pipeline are SAX events
created by parsing XML documents. There are two major types of XML APIs for parsing XML:

Tree-based APIs: These map an XML document into an internal tree structure, then allow an application to
navigate that tree. The Document Object Model (DOM) working group at the W3C maintains a
recommended tree-based API for XML and HTML documents, and there are many such APIs from other
sources as well.

Event-based APIs: An event-based API, on the other hand, reports parsing events (such as the start and
end of elements) directly to the application through callbacks, and does not usually build an internal tree.
The application implements handlers to deal with the different events, much like handling events in a
graphical user interface. SAX is the best known example of such an API.

Tree-based APIs are useful for a wide range of applications, but they normally put a great strain on system
resources, especially if the XML documents are large. In Cocoon th SAX API is used.

Pipelines & Components

There are 3 major Cocoon components: Generators, Transformers & Serializers. At the very minimum a
pipeline consists of a generator and a serializer. Other components are: readers, selectors, matchers,
actions, and pipes.

Generator
The Generator is the starting point for the pipeline. It is responsible for delivering SAX events down the
pipeline. The simplest Generator is the FileGenerator: it takes a local XML document, parses it, and sends
the SAX events down the pipeline. The Generator is constructed to be independent of the concept "file". If
you are able to generate SAX events from another source, you can use that without having to go via a
temporary file.

Transformer
A Transformer can be compared to an XSL: it gets an XML document (or SAX events), and generates
another XML document (or SAX events). The simplest Transformer is the XalanTransformer: it applies an
XSL to the SAX events it receives.

Serializer
A Serializer is responsible for transforming SAX events to a presentation format. For actors looking at the
back of the pipeline, it looks like a static file is delivered. So a browser can receive HTML, and will not be
able to tell the difference with a static file on the filesystem of the server. Cocoon has built-in serializers for
generating HTML, XML, PDF, VRML, WAP, and of course you can create your own serializers. The simplest
Serializer is the XMLSerializer: it receives the SAX events from up the pipeline, and returns a "human-
readable" XML file.

12 / 16

© 2009 @mire N.V. www.atmire.com

Sitemaps

Sitemaps are configuration documents in Cocoon that define available pipelines and components for a web
application. The sitemap allows the incoming request URI to be matched with a particular pipeline that
processes the request and creates the desired output.

Sitemap Structure
<map:sitemap xmlns:map="http://apache.org/cocoon/sitemap/1.0">
 <map:components>
 ...
 </map:components>
 <map:views>
 ...
 </map:views>
 <map:pipelines>
 <map:pipeline>
 <map:match>
 ...
 </map:match>
 ...
 </map:pipeline>
 ...
 </map:pipelines>
</map:sitemap>

13 / 16

© 2009 @mire N.V. www.atmire.com

Example Sitemap
This is a simplified example of a Cocoon sitemap (not functional)

<map:sitemap xmlns:map="http://apache.org/cocoon/sitemap/1.0">

 <map:components>
 <map:generators>
 <map:generator name="docbook" src="com.atmire.cocoon.generation.DocbookGenerator"/>
 </map:generators>
 <map:transformers>
 <map:transformer logger="sitemap.transformer.xslt" name="xslt"
 src="org.apache.cocoon.transformation.TraxTransformer"/>
 </map:transformers>
 <map:serlializers>
 <map:serializer name="xhtml" logger="sitemap.serializer.xhtml"
 src="org.apache.cocoon.serialization.XMLSerializer"
 mime-type="text/html; charset=utf-8">
 <doctype-public>-//W3C//DTD XHTML 1.0 Strict//EN</doctype-public>
 <doctype-system>http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd</doctype-
system>
 <encoding>UTF-8</encoding>
 <indent>yes</indent>
 </map:serializer>
 </map:serlializers>
 </map:components>

 <map:views/>

 <map:pipelines>
 <map:pipeline>
 <map:match pattern="*">
 <map:generate type="docbook">
 <map:parameter name="path" value="{1}"/>
 </map:generate>
 <map:transform type="xslt" src="docbook2xhtml.xsl"/>
 <map:serialize type="xhtml"/>
 </map:match>
 </map:pipeline>
 </map:pipelines>

</map:sitemap>

14 / 16

© 2009 @mire N.V. www.atmire.com

http://apache.org/cocoon/sitemap/1.0
http://apache.org/cocoon/sitemap/1.0
http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd
http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd

5. Solutions to exercises
Exercise 2.1. All genre nodes

 //genre

 Note: Using the full path instead of // is also allowed, in this case /catalog/cd/genre

Exercise 2.2. All cd titles

 //cd/title/text()

Exercise 2.3. All cd nodes that are out of stock

 //cd[@stock = 0]

Exercise 2.4. All cd nodes that have the genre 'Rock'

 //cd[genre/text() = 'Rock']

Exercise 2.5. All cd titles that were made in the USA

 //cd[country/text() = 'USA']/title/text()

Exercise 2.6. The years 'Miles Davis' has released a cd

 //cd[artist/text() = 'Miles Davis']/year/text()

Exercise 2.7. All cd titles by the company 'Columbia' of the genre 'Rock'

 //cd[company/text() = 'Columbia'][genre/text() = 'Rock']/title/text()

Exercise 2.8. All cd titles that are in stock, that don't have the genre 'Jazz'.

 //cd[@stock > 0][not(genre/text() = 'Jazz')]/title/text()

Exercise 3.1.

<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
 <xsl:output method="html"/>
 <xsl:template match="/">
 <html>
 <body>

 <xsl:apply-templates/>

 </body>
 </html>
 </xsl:template>
 <xsl:template match="//cd">

 <xsl:value-of select="artist/text()"/>
 <xsl:text>, </xsl:text>
 <xsl:value-of select="title/text()"/>
 <xsl:text> - </xsl:text>
 <xsl:choose>
 <xsl:when test="@stock > 0">
 <xsl:text>in stock</xsl:text>
 </xsl:when>
 <xsl:otherwise>
 <xsl:text>out of stock</xsl:text>
 </xsl:otherwise>
 </xsl:choose>

 </xsl:template>
</xsl:stylesheet>

15 / 16

© 2009 @mire N.V. www.atmire.com

http://www.w3.org/1999/XSL/Transform
http://www.w3.org/1999/XSL/Transform

TERMS OF USE

PLEASE READ THESE TERMS OF USE CAREFULLY BEFORE USING THESE COURSE MATERIALS. By
using these course materials, you signify your assent to these terms of use. If you do not agree to these
terms of use, please do not use these course materials.

RESTRICTIONS ON USE OF MATERIALS. These course materials are owned by @mire NV, Technologielaan
9, 3001 Heverlee (Belgium).

No components from these course materials owned, licensed or controlled by @mire NV may be copied,
reproduced, republished, uploaded, posted, transmitted, or distributed in any way, except that you may
download one copy of the materials on any single computer for your personal, non-commercial home use
only, provided you keep intact all copyright and other proprietary notices.

Modification of the materials or use of the materials for any other purpose is a violation of @mire's copyright
and other proprietary rights. The use of any such material on any other web site or networked computer
environment is prohibited.

To request permission to reproduce materials,
call +32 2 888 29 56,
email info@atmire.com,
or write to @mire NV, Technologielaan 9, 3001 Heverlee, Belgium.

16 / 16

© 2009 @mire N.V. www.atmire.com

